Extensions 1→N→G→Q→1 with N=C32×D8 and Q=C2

Direct product G=N×Q with N=C32×D8 and Q=C2
dρLabelID
D8×C3×C6144D8xC3xC6288,829

Semidirect products G=N:Q with N=C32×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×D8)⋊1C2 = C3×C3⋊D16φ: C2/C1C2 ⊆ Out C32×D8484(C3^2xD8):1C2288,260
(C32×D8)⋊2C2 = C327D16φ: C2/C1C2 ⊆ Out C32×D8144(C3^2xD8):2C2288,301
(C32×D8)⋊3C2 = C3×S3×D8φ: C2/C1C2 ⊆ Out C32×D8484(C3^2xD8):3C2288,681
(C32×D8)⋊4C2 = C3×D83S3φ: C2/C1C2 ⊆ Out C32×D8484(C3^2xD8):4C2288,683
(C32×D8)⋊5C2 = D8×C3⋊S3φ: C2/C1C2 ⊆ Out C32×D872(C3^2xD8):5C2288,767
(C32×D8)⋊6C2 = C24.26D6φ: C2/C1C2 ⊆ Out C32×D8144(C3^2xD8):6C2288,769
(C32×D8)⋊7C2 = C248D6φ: C2/C1C2 ⊆ Out C32×D872(C3^2xD8):7C2288,768
(C32×D8)⋊8C2 = C3×D8⋊S3φ: C2/C1C2 ⊆ Out C32×D8484(C3^2xD8):8C2288,682
(C32×D8)⋊9C2 = C32×D16φ: C2/C1C2 ⊆ Out C32×D8144(C3^2xD8):9C2288,329
(C32×D8)⋊10C2 = C32×C8⋊C22φ: C2/C1C2 ⊆ Out C32×D872(C3^2xD8):10C2288,833
(C32×D8)⋊11C2 = C32×C4○D8φ: trivial image144(C3^2xD8):11C2288,832

Non-split extensions G=N.Q with N=C32×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×D8).1C2 = C3×D8.S3φ: C2/C1C2 ⊆ Out C32×D8484(C3^2xD8).1C2288,261
(C32×D8).2C2 = C328SD32φ: C2/C1C2 ⊆ Out C32×D8144(C3^2xD8).2C2288,302
(C32×D8).3C2 = C32×SD32φ: C2/C1C2 ⊆ Out C32×D8144(C3^2xD8).3C2288,330

׿
×
𝔽